26 research outputs found

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing

    No full text
    Effective treatment of bacterial infection relies on timely diagnosis and proper prescription of antibiotic drugs. The antimicrobial susceptibility test (AST) is one of the most crucial experimental procedures, providing the baseline information for choosing effective antibiotic agents and their dosages. Conventional methods, however, require long incubation times or significant instrumentation costs to obtain test results. We propose a lab-on-a-chip approach to perform AST in a simple, economic, and rapid manner. Our assay platform miniaturizes the standard broth microdilution method on a microfluidic device (20 × 20 mm) that generates an antibiotic concentration gradient and delivers antibiotic-containing culture media to eight 30-nL chambers for cell culture. When tested with 20 μL samples of a model bacterial strain (E. coli ATCC 25922) treated with ampicillin or streptomycin, our method allows for the determination of minimum inhibitory concentrations consistent with the microdilution test in three hours, which is almost a factor of ten more rapid than the standard method

    Abiotic sugar synthesis from CO2 electrolysis

    No full text
    CO2 valorization is aimed at converting waste CO2 to value-added products. While steady progress has been achieved through diverse catalytic strategies, including CO2 electrosynthesis, CO2 thermocatalysis, and biological CO2 fixation, each of these approaches have distinct limitations. Inorganic catalysts only enable synthesis beyond C2 and C3 products with poor selectivity and with a high energy requirement. Meanwhile, although biological organisms can selectively produce complex products from CO2, their slow autotrophic metabolism limits their industrial feasibility. Here, we present an abiotic approach leveraging electrochemical and thermochemical catalysis to complete the conversion of CO2 to life-sustaining carbohydrate sugars akin to photosynthesis. CO2 was electrochemically converted to glycolaldehyde and formaldehyde using copper nanoparticles and boron-doped diamond cathodes, respectively. CO2-derived glycolaldehyde then served as the key autocatalyst for the formose reaction, where glycolaldehyde and formaldehyde combined in the presence of an alkaline earth metal catalyst to form a variety of C4 - C8 sugars, including glucose. In turn, these sugars were used as a feedstock for fast-growing and genetically modifiable Escherichia coli. Altogether, we have assembled a platform that pushes the boundaries of product complexity achievable from CO2 conversion while demonstrating CO2 integration into life-sustaining sugars
    corecore